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(Received 2 January 1992; accepted 8 August 1992) 

We propose a simple model for the chevron structure observed in recent 
experiments by cooling a smectic A liquid crystal. We discuss the influence of the cell 
thickness and of the anchoring conditions on the temperature dependence of the 
layer tilt angle, and the formation of this structure in the vicinity of a smectic A- 
nematic transition. Below this critical point, a transition between a bookshelf 
structure and a chevron one appears. This transition is second order, with 
continuity of the tilt angle, the threshold being a function of the cell thickness. In 
addition to a classical layer thinning mechanism, we discuss another possibly based 
on the temperature dependence of the elastic moduli. We also propose an 
explanation for the existence of a critical thickness below which the chevrons do not 
appear. 

1. Introduction 
Recently, the properties of chiral smectics C in thin cells have been extensively 

studied [l-31 in view of the possible application of these compounds to the realization 
of high speed display devices. The geometry usually involved is of the bookshelf type, 
the layers being forced perpendicular to the cell plates by means of a suitable surface 
treatment. In some particular conditions, the layers become tilted, and bend in the 
middle plane of the cell, leading to what is called a chevron structure [2,3]. The 
complete theoretical description of this structure remains to be achieved, although a 
simplified model built by Nagakawa [4] is now available. 

In recent experiments, Takanishi et al. [ 5 ]  and Ouchi et al. [6]  have shown that the 
chevron structure was not a peculiarity of chiral smectics C, but may also be obtained 
by cooling a smectic A. These experiments were performed on two different liquid 
crystals ((Cn-butyloxy benzylidene-4-n-octylaniline) (40.8) and 4-n-octyl-4- 
cyanobiphenyl (8CB)), starting the cooling just above the smectic A-nematic 
transition, in the nematic state. Just below this transition, the X-ray diffraction pattern 
indicated that a bookshelf structure was formed. Upon decreasing the temperature, a 
chevron structure appeared, the layer tilt angle 8 varying continuously from 0 to some 
degrees for a cooling of order 10 K. These authors suggested that this phenomenon 
could be due to a layer thinning effect, the temperature dependence of the layer 
thickness being, however, at the limit of accuracy of their detectors. The phenomenon 
was found to depend on the thickness of the cell, h, the main effect being a hysteresis of 
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102 L. Limat and J. Prost 

the temperature dependence of 8, for small values of h (2 and 9 pm). In addition, in the 
8CB case, the chevron structure was not observed for the smallest cell thickness (2 pm) 
and was replaced by a uniformly tilted structure. 

Here, we propose a simple model that allows us to calculate the temperature and 
cell thickness dependence of the tilt angle. The basic elements of this model are 
presented in Q 2 essentially, we assume that the natural thickness aB of the layers in the 
bulk of the sample is not equal to that imposed at the surface of the cell plates as. This 
may come from a temperature dependence of aB as well as possible surface effects 
associated with microscopic interactions [7], and introduces a strain of the bookshelf 
structure E = (as- aJaB that should increase when the temperature is decreased. By 
using simple energy considerations we show that a chevron structure involving three 
grain boundaries such as those imagined by Bidaux et al. and by Kleman [8,9], should 
be favoured when the strain E applied at the boundaries becomes larger than a critical 
value E~ This threshold scales as (h/I)’, and 1 = , / (K/B) being the penetration depth 
built on the elastic constants K and B, respectively associated with a bending and a 
compression of the layers. In Q 3, the problem of a chevron structure in a cell of finite 
thickness is solved exactly. This allows us to obtain: (i) the exact value of the prefactor 
involved in the relationship E, x(h/A)’, (ii) the evolution of the chevron shape when E is 
increased and in particular, (iii) the variation of the layer tilt angle as a function of both E 

and h / l .  For any value of the ratio h/I ,  the behaviour of 8 ( E )  is associated to a second 
order bifurcation with continuity of 8. In Q 4, we discuss more precisely the influence of 
the temperature on 8 for different experimental conditions. We show that in the case of 
the experiments by Ouchi et al., the variation of the layer thickness (layer thinning 
effect) should not be the only relevant mechanism. The variation of I with temperature 
in the vicinity of the smectic A-nematic transition should also influence that of 8. In 
particular, a mechanism of chevron formation can also be imagined based on the 
variation of 1 even in the case of a constant mismatch E. We also show that these 
considerations may perhaps explain the existence of a critical thickness below which 
the chevron structure does not appear and is replaced by a uniformly tilted structure. In 
Q 5 we discuss the influence of a finite anchoring energy. All of the calculations presented 
in 8 2 to 4 were based on the assumption of rigid boundary conditions, i.e. of an infinite 
anchoring energy. We show that these results still hold even for soft boundary 
conditions, the corrections being negligible in the usual experimental conditions. 
Finally, in Q 6 we discuss the limits of our model and its possible improvements. 

2. Modelsimplified approach 
As suggested in figure 1, we consider a cell of thickness h, containing a smectic A. At 

the boundaries (x = 0, h), we assume that the layers remain always perpendicular to the 
solid surfaces. Practically, conditions of this kind are achieved by means of a suitable 
surface treatment (rubbing method after coating with PVA for instance in [5] and [S]). 
A small pretilt of the layers is, however, usually involved but will be neglected in the 
present paper. In addition to this first boundary condition, we assume that the 
thickness of the layers a(x) is imposed in the vicinity of these surfaces (a(x)=a, at 
x = 0, h), where it may differ from the natural thickness in the bulk called aB. Two 
different physical origins for this situation can be imagined: 

(1) As suggested by Ouchi et al. [6]  aB can depend weakly on temperature. If 
cooling is started at T = To from an ideal bookshelf structure, with a(x) = aB( To) = a: 
everywhere, a no slip condition at the boundary (or the conservation of the number 
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Model for the chevron structure in a SA 103 

of layers in a confined geometry), can impose a,=ag during the cooling process, 
while aB( T )  is varying. If we assume a simple dependence of the kind aB( T )  = a; 
(1 -aAT), where A T =  To- T is the temperature shift, the bookshelf structure 
suggested in figure 1 (a) is submitted to a strain given by 

E = (as - uB)/uB x aA T.  (1) 
(2) Another possibility is that, because of molecular interactions, the behaviour of 
the layer thickness may be somewhat different at the surface of the plates from that 
in the bulk of the sample. This hypothesis is supported by recent observations of a 
crystalline order in a smectic A, frozen in the vicinity of a solid surface [7]. In this 
case, a, and uB can have their own temperature dependence. In the simplest 
situation, we can admit that a, is a constant imposed by the nature of the solid. 
Expression (1) is then replaced by: 

E x (US - U ; ) / L Z ~  + c ~ A  T .  (2) 
In both cases, cooling the bookshelf structure will be associated with an increase of 

elastic energy of the cell per unit surface, the expression of which being given by 

F ,  =$BhE2, (3) 
where B is the elastic modulus associated with a compression of the layers. Another 
equilibrium state of the smectic can be imagined by allowing local rotations of the 
layers. In a rotation of the layers through an angle 8(x), the conservation of the number 
of layers versus x implies that a = a, cos 8 x as( 1 - 8’/2). The elastic energy per unit 
surface is now given by 

F =  j [ i K ( 3 ‘ . k B ( ~ - ~ )  o2 ]dx, 
(4) 

where K is the elastic modulus associated with a bending of the layers, and E is still 
defined as E(T) = (a, -aB)/aW The minimization of F with a state of strain vanishing at 
infinity is a well-known problem [8,9], whose solution is 

with A = J ( K / B )  and 0, =,/(2~). As suggested in figure 1 (b), a new equilibrium state 
compatible with the boundary conditions can be obtained by combining three grain- 
boundaries located at x,, = 0, h/2, h. These walls, of thickness Alem define the frontiers of 
two regions where the tilt compensates the layer thinning. For this model of a chevron 
structure, the layer tilt angle of the chevron, and the elastic energy per unit surface of the 
cell are 

o m  = J ( ~ E ) ,  (6 4 
F -- 4 J ( K B ) E ~ ’ ~  

2 - 3  

By comparing equations (3) and (6 b), we obtain that the chevron structure becomes 
the most stable configuration for E larger than a critical value E, that scales as E, 

= n(A/h)’, n being a numerical factor (of order 7.1 in this simple approach). This effect is 
equivalent to the undulation instability that would occur if the layers were parallel to 
the cell walls [lo, 111. The dependence of E ,  upon the ratio of the two scales h and 1 can 
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II, 

h 

h/2 

0 

Figure 1. Upon cooling a bookshelf structure in which the layer thickness a, is imposed at the 
boundaries, two different states can be imagined: (a) a bookshelf structure under 
mechanical tension, associated with a uniform strain E = (a, -aB)/aB (aB being the natural 
thickness in the bulk), and (b) a chevron structure involving three walls where the elastic 
energy is localized. 

also be understood as follows: in the chevron structure the strain is localized in regions 
of thickness Ale, while in the bookshelf case, these regions cover in fact the whole cell of 
thickness h, the local strain remaining of the same order of magnitude. 

We can now imagine two basic processes leading to a bookshelf-chevron transition 
on cooling: 

(1) If we are far from the smectic A-nematic transition il does not depend on 
temperature and is of the order of a few layer thicknesses. On cooling an ideal 
bookshelf structure, this structure will remain stable provided E = aAT (or E = c0 
+aAT) remains smaller than E ,  ~ ( A l h ) ~ .  The chevron structure will appear just 
above this threshold. 
(2) If the cooling is started from the smectic A-nematic transition To = qAN, and 
because of the divergence of K / B  in the vicinity of this critical point, il (and thus E,)  
should be a decreasing function of AT. Even in the case of a constant strain E~ 

imposed by the boundaries (a = 0), a bookshelf-chevron transition will occur by 
variation of 1. In general, both effects should be involved, E(T) being an increasing 
function of AT, and E,(T) a decreasing one. Different particular cases will be 
discussed in $4, 
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Model for the chevron structure in a S ,  105 

Clearly, this simplified model of a chevron is correct only in the limit h>>1/8,. In 
the vicinity of the bookshelf-chevron transition, the three walls overlap. The elastic 
energy from equation (6 b) is modified and we can expect that the prefactor n involved in 
the expression E ,  = n(l/h)’ will differ appreciably from the value 7.1 calculated 
previously. In addition, the chevron layer tilt angle which we call eM will differ from 
8, = J ( 2 4  and should be a function of both E and the ratio h / l .  We need therefore to 
solve our problem exactly for any value of the cell thickness. 

3. Exact solution in a cell of finite thickness 
By applying the Hamilton principle, we deduce form equation (4)  that we have to 

solve 

1 
4A2 

( 2 ~ - 8 ’ ) ~ =  - - ( 2 ~ - 8 i ) ~ ,  (7) 

with the boundary conditions @(O)=O and 8(h/4)= 8,. The right hand part of this 
equation is obtained by writing that the maximum tilt angle 8,=8~(E,h/A)  is 
presumably reached at x= h/4, where the bending energy vanishes. 8, is the layer tilt 
angle that would be measured in an X-ray diffraction experiment. We note that the 
analogy between our problem and the dynamics of a particle in a potential (8;-8’)’ 
implies that 18(x)l<8, < 8, = d(2~). Solving equation (7), we obtain a solution of the 
kind: 

F(@, k) being the elliptic integral of the first kind [ l 2 ]  
rcp 1 

of arguments 

The equation giving eM as a function of E and h / l ,  is simply obtained by writing the 
boundary condition 8(h/4) = 8,: 

%=,/(4~-8h) h K (  J(4g-8;) 8M ) ’ (9) 

where K(k)  = F ( 4 2 ,  k) is the complete elliptic integral of the first kind. We have plotted 
in figure 2 the evolution of 8, versus E for different values of the parameter h / l  and 
compared this variation with the asymptotic value &(E) for an infinite thickness. The 
finite thickness of the cell tends to reduce the tilt angle, this effect increasing when h is 
reduced. We see in figure 2 that the transition is second order, with continuity of the tilt 
angle, the threshold being dependent upon the ratio h / l .  The exact value of this 
threshold can be obtained easily by noting that K(O)=n/2 

2 

E, = n($ with n = 471’. 
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106 L. Limat and J. Prost 

& 
Figure 2. Dependence of the layer tilt angle on the imposed strain E, for different values of the 

ratio I /h( l /h  = 0,0~004,0~006,0~008,0~01). 

The rather large value of the prefactor is to be noted. The simplified approach of 0 1 
leads to a smaller value (7.1 instead of 39.5). As we have mentioned, 8, is a function of 
both E and h / l ,  and thus of both E and E, = 4 7 ~ ~ ( l / h ) ~ .  When E is close to cC, 8 M  follows a 
typical mean field law, namely 

With respect to the dependence on E,  and in the vicinity of the threshold, the influence of 
a variation of h reduces to a simple shift of E,, without modification of the function 
8(E - 8,). Far from E,, 8, tends asymptotically towards 8, = J ( ~ E ) ,  the cross-over regime 
being given by 

The exponential correction takes into account the overlap of the three soliton kind 
solutions introduced in 6 2. As observed in figure 2, all of the curves tend to collapse on 
the curve Om(&) for E large enough to satisfy A/8,<<h. 

The dependence of OM on the ratio h / l ,  is indicated in figure 3 for different values of E. 

Just as for figure 3, two different regions described by equations (1 1 a) and (1 1 b) can be 
distinguished. We note again that even for a constant layer thickness (u = 0), a second 
order bookshelf-chevron transition can occur by cooling if l depends on temperature, 
provided that E is initially non-zero. The function BM(AT) is to be deduced from the 
variation indicated in figure 3 and from the function A(T). This mechanism mentioned 
in 02 will be discussed in more detail in the next section. 

It is possible to calculate explicitly the variation of the chevron shape on E.  For a 
given value of k, equation (6) and (7) can be inverted to give 
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Model for the chevron structure in a SA 107 

&=0.008 'T 

6 

5 

4 

3 

2 

1 

0.006 

0.002 

2 0 .  2 5 .  

h/h 
Figure 3. Dependence of the layer tilt angle on the ratio h / l ,  for different values of the imposed 

strain E(E = 0~002,0~004,0~006,0~008). 

sn being the jacobian elliptic function sn [12]. The angle O(x) is related to the layer 
displacement in the y direction u(x)  by the relationship 8 = au/ax. A simple integration 
gives 

cosh-'[k'l-cosh-' 

with k' = J ( 1 -  k2 )  and where we have used the jacobian elliptic function dn. Near the 
threshold, it is easy to check that u and 8 reduce to circular functions 

that corresponds to the fundamental undulation mode of the layers in a confined 
geometry. Progressively this shape evolves towards the ideal chevron shape suggested 
in figure 1 .  The approximate solutions from equation (14) can also be used directly to 
calculate the threshold E, in a variational approach. Near the threshold Q 2  is small 
compared to E, and the strain energy can be developed as 

F =&BhE2 -&Bh[ ~ ( 0 ' )  -Az( ($>'>1+ . . . . 

Assuming now that f3 is of the kind O(x) = B0 sin [2n(x/h)],  we find 

F=$BhE2 -*Bhf36 

and recover the exact value of the threshold E, = 4n2(A2/h2). 

4. Different mechanisms of chevron formation: temperature dependence 
We now discuss different behaviours that can be observed in the cooling of a cell of 

finite thickness. These different cases are indicated in figure 4. 
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108 L. Limat and J. Prost 

0 AT3 AT 0 AT4 AT 

(4 (d ) 
Figure 4. When cooling starts, E grows while E,- decreases. When the two curves cross, the 

chevron structure appears. Different cases are suggested: (a) cooling far from the smectic 
A-nematic transition 1 and thus E, is nearly constant; (b) cooling starting from the smectic 
A-nematic transition, because of the divergence of the bending modulus, the chevrons 
appear for a ATlarger than in case (a); (c) a bookshelf-chevron transition occurs even 
though the layer thickness mismatch is essentially temperature independent; ( d )  same as 
(c) but for very thin cells: the chevrons never appear, but the threshold associated with a 
half-chevron uniformly tilted structure (curve E:) may be reached. 

4.1. Cooling of a smectic A far from the smectic A-nematic transition 
In the simplest case, we can imagine an experiment in which a pure bookshelf 

structure initially unstrained is progressively cooled, the temperature remaining very 
different from the critical temperature of the smectic A-nematic transition (and of any 
other transition temperature). As mentioned in section 1, the thermal strain reduces to 
E = EAT = a(T, - T )  and the length scale A can be considered as a constant Al,  usually of 
the order of a few layer thicknesses. In this case see figure 4 (a), the bookshelf structure 
remains stable at the beginning of the cooling ( E C E , ) ,  and is replaced by a chevron 
structure (E  > E,) at a critical temperature TI = To - ATl given by 

The position of the threshold TI is difficult to estimate under the usual experimental 
conditions, because there are very few data concerning the temperature dependence of 
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Model for the chevron structure in a SA 109 

the layer thickness. The only data available are those of Ouchi et al. for 8CB that are 
consistent with the orders of magnitude aix30.5A and ctx K-’. If we assume 
1, XU:, we obtain a critical cooling To - Tl of the order 5 x low4 K, 5 x K and 
0.1 K for cells of thickness h=25pm, 9pm and 2pm respectively, such as in the 
experiments of [6]. In this case, the effect of the cell thickness should be negligible for a 
cooling of a few degrees, and the approximate 8, x 8, = J(2ctAT) can be used. For a 
cooling of order 2 K, this estimate gives a layer tilt angle of order 3.5”. This value is 
consistent with the data obtained by Takanishi et al. [ S ] ,  and by Ouchi et al. [6], which 
seems to support the mechanism of layer thinning that they have suggested. 

In summary, the considerations developed in this section allows us to obtain good 
orders of magnitude for the layer tilt angle, but not for the influence of the cell thickness, 
measured in our simplified model by the shift of the threshold. We suggest that this may 
be due to the following reasons: the experiments were in fact performed starting from 
the nematic state. In this case, just below the smectic A-nematic transition (see the next 
section), the elastic modulus B depends strongly on temperature, the length scale 1 
being much larger than ,Il. We must now reconsider the problem of chevron formation 
in the vicinity of a critical point. 

4.2. Cooling in the vicinity of the smectic A-nematic transition 
In the vicinity of the smectic A-nematic transition, 1 depends [13] on temperature 

as: 

where T* is the critical temperature of this phase transition. Usually, , I2  is of the order 
of the layer thickness, and m is a critical exponent (mzO.2 in most cases). From 
equation (lo), we deduce that the chevron structure will appear if 

with 

E(T)=(u,-uB)/uB=(u,-u,*)/u$ +E(T*- T), (19 b) 
where in analogy with section 2, we have designated by a; the natural thickness of the 
layer at the smectic A-nematic transition and by a, the thickness imposed at the 
boundaries. For simplicity, we only discuss the case a, = a; in this section, the influence 
of an initial strain being treated in the next one. As observed in figure 4 (b), the evolution 
observed in the cooling process is not modified qualitatively: just below T*, a bookshelf 
structure appears, and breaks into a chevron one at a critical temperature T2 given by: 

a(T* - T2)= [4.2(12/h)2]1/(1+2m)[,T*]2m/(l+2m) (20) 

For 8CB, T* = 306.5 K, and m z 0 2  together with , I2  %:a,* % 30-5 A lead to values of 
order T* - T2 x 0.02 K, 0 1  K and 1 K, respectively for the studied cell thicknesses 
h = 25 pm, 9 pm and 2 pm. The effect of the cell thickness is now not negligible in a 
cooling of a few degrees. The quantity T* - T2 is larger than T* - TI because 1 can be 
much larger than 1, near T*, and depends on h as h-”(1+2m)(h-0” for m =0.2) instead 
of h-’. We have plotted in figure 5 the typical variation of 8, versus Tfor different 
values of the ratio &/h. This variation combines now both dependences of OM upon E 

and h / l  depicted in figures 2 and 3. The behaviour obtained is however very similar to 
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110 L. Limat and J. Prost 

Figure 5.  In the case of figure 4 (b) (E(T*) = 0, see § 4,2), evolution versus AT = T* - T of the 
layer tilt angle for L,/h = 0,0~002,0004,0~006,0~008. 

that of figure 2. We again have a bifurcation associated with a second order transition, 
that can also be described near TBC by equation (10). By combining equations (1 1 a), (18) 
and (20), it is possible to pin down the behaviour of 8, near the bifurcation 

Far from TBc, 8, tends to the asymptotic value OT = [2a(T* - T)]'l2 associated with an 
infinite thickness. 

In summary, when the divergence of I is taken into account the influence of the cell 
thickness may become measurable. In our model, this effect reduces to a shift of the 
threshold that scales as h2/(1+2m),  m being the exponent of the length I .  

4.3. Cooling near the smectic A-nematic transition with an initial tension 
We still consider the case of a cooling started in the nematic state, but we now 

assume that a, is larger than at. As the growth of the layers presumably begins near the 
solid surfaces, the thickness a, =as will be imposed in the bulk and the bookshelf 
structure formed at T* should be under tension: E( T*) = (as - a$)/aB # 0. 

For simplicity, we admit that the temperature dependence of a, and a, can be 
neglected: E remains constant while E, depends on temperature. As indicated in figure 
4(c), a bookshelf-chevron transition also occurs in this case by variation of I .  The 
position of the threshold is obtained by writing that E = E,, which gives 

Now, T* - T3 scales as h-'/" (sz h-' form = 0.2). Below T3, the behaviour of 8, is to be 
deduced from its dependence on h/A indicated in figure 3. The main difference with the 
other cases is that 0, should saturate at the value 0, x J [ ~ E (  T*)] for large values of T* 
- T.  Concerning the orders of magnitude, an initial strain of order 0.01 (0, sz 10') with 
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Model for the chevron structure in a SA 111 

the estimate A2 z a2 FZ 30.5 A leads to T* - T3 ~ 0 . 0 6  K in a cell of 2 pm of 8CB. This 
value is rather small, but depends strongly on the prefactor of A 2 .  For instance, an 
estimate based on d2 FZ 3a$ is somewhat higher: T* - T3 252 K .  

The main interest of this mechanism of chevron formation is that it may explain the 
observation of a critical thickness h* below which the chevron structure does not 
appear. Far from T*,  we may expect that d( T )  should tend to the value 2, introduced in 
$4.1. As indicated in figure 4 ( 4 ,  E,(T) should tend to the associated value ti1) 
= 4n2A:/h2 and should remain bounded from below. If at the smectic A-nematic 
transition E(T*) is smaller than EL’), the chevron structure will never appear. The critical 
thickness is thus defined by the equality E(T*) = which gives 

with the same orders of magnitude as previously, A, %aB= 30.5 A and E(T*)xO*O~, we 
find h* ~ 0 . 2  pm. This value is ten times smaller than the experimental value obtained 
by Ouchi et al. for 8CB. 

In addition to the strained bookshelf structure, we can imagine the possibility of a 
uniformly tilted structure involving only two walls, such as those of figure 1. In other 
words, this would correspond to a half-chevron structure, deduced from the chevron 
associated with a thickness 2h. As indicated in figure 4 ( d ) ,  the threshold E, becomes four 
times smaller than for the complete chevron structure, and a range of temperature 
appears where the half-chevron structure is possible, but not the chevron one. This is 
precisely reminiscent of the observations of Ouchi et al., who found that for small 
enough cells, only the uniformly tilted structure was stable. We still have to understand 
how this uniformly tilted structure can be formed. 

5. Influence of the anchoring energy 
All of the calculations presented in the previous sections were based on the 

assumption of rigid boundary conditions: O(x)=O for x=O and h. More realistic 
conditions are obtained by assuming a finite anchoring energy W, the total energy 
being 

F = Jl [i K (:>’ + ; B  ( E -:>’I dx + W [ d 2 ( x  = 0) + 02(x  = h)] .  (24) 

The bulk equation (7) still holds, but the boundary conditions are now of the kind 
e(d8/dx) = & 8, e = K/W being a typical anchoring length [l I ] .  We have now to 
evaluate the influence of this finite value Won the threshold value E,. 

In the simplest approach, we can say that the new value of the threshold E , ~  will 
remain bounded between the values associated with the rigid and soft cases: W= co and 
W= 0. The soft case value can easily be deduced from the approximate form of the bulk 
energy [16], the fundamental mode being now of wavelength 2h instead of h 
~ ( x ) z  8, cos [n(x/h)]. The value obtained coincides with the threshold that would be 
obtained in a cell of thickness 2h with rigid conditions: E , ~  = n(A2/h2). We obtain then 
that the threshold will remain bounded: n(A2/h2) < E ,  < 4n(A2/h2). This suggests that the 
different scenarios of chevron formation suggested in $4 will not be significantly 
affected and will still roughly hold with a slight modification of the orders of magnitude. 
In fact, as we will see, the correction to the rigid case is very small under the usual 
experimental conditions. 
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To be more precise, we have to assume that, in the vicinity of the threshold, e(x) is a 
combination of the two limiting cases 

A number that measures the influence of W(or of the scale e = K /  W) on the difference 
4n(A2/h2) - E, can be built very easily as the ratio of the order of magnitude of the surface 
energy Fs=(K/e)Bq to that of the bulk energy F ,  =(K/h)02 

When this parameter is small, E, remains close to the rigid case. The correction can be 
calculated by using the variational approach discussed at the end of $3, the test 
function being now of the kind from equation (25). This finally gives an approximate 
energy 

h 
F z+BhE2 - B -  Q(01,02) + . . . 

2 

with 

The threshold is reached when one of the eigenvalues vanishes, which leads to 

( E ,  - 112 $) ( E ,  -479 ;) =$ ( E ,  - 72 p) A2 

In the limit of small a, the relevant solution of this equation reduces to 
72 
h 

E, =4n - [ 1 -48 + . . .]. 
h2 

Usually, for clean surfaces e is of a molecular size and weakly temperature dependent. 
In this case, corrections involved in equation (29) are negligible and rigid boundary 
conditions prevail. 

6. Discussion-possible improvements 
In summary, we have built a simplified model for the problem of chevron formation 

by cooling a smectic A. This model allows us to recover some qualitative observations 
of Ouchi et al., and also reasonable orders of magnitude for the influence of the cell 
thickness: temperature dependence of the tilt angle for thick cells (with good orders of 
magnitude), correct orders of magnitude for the cell thicknesses at which finite size 
modifies the results, and the possible existence of a critical thickness below which the 
chevrons do not appear. However various unknown parameters enter this model, and 
some experimental observations are not explained: the existence of an hysteresis at 
intermediate thicknesses instead of a shift of the threshold and the formation of focal 
conics. 

We think that the next step would involve solving the problem after allowing a 
slight pretilt of the layers near the solid plates. The existence of this pretilt is mentioned 
in the paper of Ouchi et al. Preliminary calculations [l5] suggest that instead of being 
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second order, the transition could be first order in this case with a discontinuity of the 
tilt angle. This can lead to hysteretic effects similar to those found by Ouchi et al. In 
addition, these experimental results raise a question concerning the experimental 
conditions: is the stationary state really reached in the time of the experiment? The 
hysteresis may possibly be attributed to problems of delay in the evolution towards 
equilbrium. 

Finally, it is interesting to mention the similarity of the chevron problem with that 
of buckling of beams or plates [16]. Basically, we have compared an energy associated 
to a uniform strain with another associated to a bending phenomenon, and found just 
as for the buckling problem a threshold on the applied stress. From this point of view, 
the chevron formation with an initial pretilt of the layer of opposite value on each plate 
is very similar to the problem of buckling of a beam with an initial curvature. We can 
expect in this case, the occurrence of an imperfect bifurcation, the experimental 
consequences of which will be discussed in a future paper [lS]. 

Another possible improvement of our model would be to introduce dislocations in 
the layers that could eventually collapse in focal conic structures. This phenomenon 
could be equivalent to that imagined by Williams and KlCman [ 171, in the theoretical 
treatment of thin cells of smectics A under shear. However, it should not occur at small 
enough mismatch parameter E, since the energy of a dislocation wall goes linearly with 
E,  whereas the chevron energy goes as c3I2. Note that another model of the chevron 
based on distributions of disclinations has been proposed recently by Lejcek [ 141. 

Finally, let us point out that experiments performed near the bookshelf-chevron 
threshold, and also investigations of the layer behaviour near the cell walls could 
greatly enlighten these attempts of modellization. 

We acknowledge helpful discussions with M. Brunet-Germain, N. A. Clark and L. 
Lejcek. 
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